
Problem Solving
in Programming and Budo

 Many people will tell you that computer programming is abundantly
complicated to learn, and you have to be highly intelligent to be successful.
Although some God-given intelligence does help with learning to program, it
is not a requirement. Let it be known that anyone can learn to code. The
same people will tell you that martial arts are abundantly complicated and
difficult to learn, and you have to be physically gifted to make any progress.
Similarly, starting physically gifted is not the measure of whether a student
will be successful or not. A more accurate measure of whether someone can
learn to code or is able to practice martial arts successfully is if they are willing
to put in the effort necessary and the time required. Most skills are much the
same, no matter if it is playing guitar, lifting weights, or writing a paper;
anyone can learn and become better if effort and practice are put forth.
Humans are remarkable when it comes to learning new skills, and it is simply
a matter of honing your skills over time.
 I have learned a great deal in my short time practicing martial arts. Some
lessons were physical in nature, while others were more ideas or principle-
based. The real secret is that the majority of what I learned was directly
applicable to my life as much as it was to my martial arts practice. Training
has directly influenced and illuminated other areas of everyday life—some of
these lessons I learned from martial arts are straightforward and non-esoteric
principles. Take, for example, learning to keep better posture, have special
awareness, or maintaining focus under pressure. This essay will address a
seemingly more esoteric application of martial arts principles, comparing
problem-solving as it is found in martial arts to problem-solving as it pertains
to computer science and the principles that connect them, as they relate to
efficiency, nomenclature, timing, and ongoing training and development.
 Sun Tzu’s The Art of War has this maxim: “When you engage in actual
fighting, if victory is long in coming, then men’s weapons will grow dull, and
their ardor will be damped.” (Tzu, 5) One of the many ways to interpret this

— Why Budo? —

Regardless of the times
in which you live, or the

circumstances of your life,
success largely depends on

things you can control:

• Building a foundation of
strong relationships in a

community of mutual
support and achievement.

• Forging a disciplined and
positive mindset.

• Enhancing your physical
health and capabilities.

These are exactly the
benefits membership in a

dojo provides.

Copyright 2021 Itten Dojo, Inc.
701 W Simpson Street, Suite C
Mechanicsburg, PA 17055-3716

www.ittendojo.org

Sword and Spirit
The eJournal of Itten Dojo July 2021

Robert Wolfe, chief instructor of Itten Dojo, began martial arts training in 1975
while attending Bucknell University, where he earned a degree in Japanese
Studies. Mr. Wolfe has taught since 1985, and founded Itten Dojo in 1992. His
articles on martial arts have been featured in publications such as The Bujin,
Budo Shinbun, the Journal of Asian Martial Arts, Bugeisha, Aikido Today
Magazine, Inside Karate, Martial Arts Training, and Martial Arts Professional.

quote from Sun Tzu would be an exercise in efficiency. If
an army or state can win a fight without fighting, it would
be wise to do so, as not having to fight or go to war would
save time, money, and resources. Sun Tzu’s maxim
applies not only to states engaged in combat and to an
individual’s own martial arts practice, but it can also apply
to coding. It is important not to reinvent the wheel every
time a programmer needs a program to function a certain
way. Often, it is better to call in an Application
Programming Interface (API), a set of already written
functions or use existing and tested code rather than
writing your own. The principle is only to do what is
needed to obtain the desired outcome, and the simplest
solution may not always be taking physical action.
 The efficiency of movement could be described as
taking out extra steps. Efficiently using one’s body could
be described as creating a structure that leverages the
supplied mechanical power. Efficiently reacting could be
described as training an effective response to minimize
reaction time. In computer programming, overly complex
code with redundancies can most often be solved in a
similar vein to movement efficiency in martial arts by
“taking out the extra steps” (Foote, 269). Cleverly using
computer resources can solve many common bugs and
errors in a manner similar to using one’s body efficiently.

2

 When coding, it is also essential to maintain system
resources such as memory—memory leaks exemplify this.
A memory leak is when a programmer creates a memory
store in a heap but does not delete it, like an expired
encyclopedia taking up space on a shelf. A programmer
should always release memory when it is no longer needed
(What is Memory Leak? How can we avoid?). This is
similar to creating a structure that uses mechanical power
in your body. A close inspection of the timing of a function
can make all the difference in a computer program being
able to run (Foote, 233), similar to reacting efficiently.
 This could be as simple as using an if-then statement,
“If X then do Y.” In other cases, a programmer may need
to create event listeners, where if the user clicks in a certain
spot then the computer does X. In programming and
martial arts, the way to make kata or a program better is
the same. Use only what you need, use what you have as
efficiently and effectively as possible, and plan responses
beforehand.
 In an essay titled “What’s The Point?,” in the
September 2016 issue of this journal, Robert Wolfe
details what area of the foot to put your weight on to
perform a turn in order to protect your knees and move
efficiently. According to Mr. Wolfe, there are three points
to consider: The point inside the ball of the foot under the
big toe, the point outside the ball of the foot under the
little toe, and the heel of the foot. Where do you put your
weight, when? Your choice matters. Mr. Wolfe is talking
about preventing mechanical failure without sacrificing
efficiency and accuracy in movement. He does so by
making clear and meaningful distinctions between the
parts of the foot.
 The governing principle of Mr. Wolfe’s movement
drills is similar to the one expressed in Robert C. Martin’s
book Clean Code, by making meaningful distinctions a
clear rule. Martin recommends that when naming a
variable, use a full meaning name to avoid confusion and
minimize possible failure (Martin, 20). For example, by
calling a variable “var1,” the only information another
programmer could gain from this variable name is that it is
a variable and was most likely the first one. A variable
called “CarsOnTheRoad” would give another
programmer much more detail. Using this name, an

3

unfamiliar programmer could guess what type of
information the variable would hold and the variable’s data
type. It is not good enough just to move from one place or
stance to another with no regard for how you get there—in
martial arts, specificity matters. How you move and the
choices you make are as important as the destination.
Similarly, when coding, it is not sufficient to satisfy the
compiler for the program to run, rather, the choices you
make in how you get there can make all the difference.
The principle to know is to be specific.
 Another way to solve coding problems by not adding
unnecessary bugs in a large coding project would be to use
design patterns (Freeman). It is unnecessary to reinvent
the wheel for each project. Instead, a programmer’s time
can be better invested by reusing code and solving similar
problems in similar ways. This is also true in martial arts.
Take, for example, sheathing the sword, or noto. It would
not serve a martial artist to sheath a sword in many
different ways without any thought as to the reason for
doing so. A student should learn when and why they
sheath a sword with one approach over another, instead.
An example of this in coding is the Strategy pattern. The
Strategy pattern encapsulates a family of algorithms so

they can vary independently from the clients, the part of a
program using the algorithms (Freeman, 24). Simply put,
it allows a programmer to update an algorithm in one
place instead of having to update the algorithm in every
place that it is used. In both martial arts and coding, the
principle is the same: Use already tested responses instead
of reinventing the wheel each time.
 A student doing kata without regard for the timing of
the movements isn’t practicing nearly as effectively as they
could. Consider Ki-musubi (“Spirits-tied”), a
fundamental, paired sword-form found in Sanshu-ho Aiki-
budo. In Ki-musubi, there are four distinct speeds or
tempos that need to be incorporated for the kata to be
correct: Slow, Quick, Steady, and Surge. These tempos
are just as important to the kata as the overall pattern and
steps themselves. Timing is also important for a
programmer, as failing to consider when a line of code is
executed can lead to issues. If the code makes a call to an
external source, it may be essential to halt other lines of
code until a response is received. In JavaScript, when
calling an external API, one way is to use a “wait
function” that halts the code until the call has received a
response.

4

 The order that lines of code will be executed must also
be considered to avoid errors while coding. If a line of
code needs a resource, the currently running line it is using
must wait for the resource to be released. This is similar to
the idea of Go no Sen in martial arts, where one waits for
the opponent to attack and then responds (Weisgard). Or
maybe a programmer needs a line of code to execute before
any other line; to a martial artist, this would be Sen no
Sen, “attack the attack” or respond faster than your
opponent (Weisgard). A programmer may even need a
line to be loaded before a program starts by declaring a
variable to be static. Sen Sen No Sen, or taking the
initiative and attacking before the attack (Weisgard).
 Looking broadly, the stages of software development
are Requirements Gathering, Software Design, Software
Development, Test and Integration, Deployment, and
Operationalization and Maintenance (Jachja). It is worth
detailing the last step, Operationalization and
Maintenance, where there is never a point where a project
is good enough. Instead, there is always more work to do,
be that security, fixing bugs, or continued optimization.
Both software and martial arts must continue to evolve.
The last principle here can be summed up as, “You are
either growing or dying.”

 Practicing martial arts has changed perspectives I once
took for granted. Getting out of the mindset that makes
coding difficult is also practiced in the martial arts. Will
martial arts make you a great programmer? Maybe not,
but it will make you a more well-rounded person with
skills that can be applied to both areas. Computer
programming may be done quickly and easily by just
slapping down what you want a computer to do without
concern for all of the coding processes outlined in this
essay. A poorly designed program may compile or even
run, but it will be full of bugs and security issues if the
program has any bit of complexity to it. For the majority of
programming issues to be avoided, all a programmer has
to do is put in the work and follow best practices.
 When we practice martial arts, we are fundamentally
studying how to put in the time and work that will allow us
to continue to be more efficient and evolve. Too often,
people give up when learning gets difficult, or they look for
easy solutions. Training in martial arts helps us avoid the
mentality that some things are too hard to do. A better
way to think of approaching new skills would be deciding
if it is worth the effort and time to understand and apply
in multiple ways. This is how martial arts fundamentally
relates to computer programming and life in general.

Charles Hudson joined Itten Dojo in 2012 but his training was interrupted by
moves to Florida and Washington. Since returning he’s become an indispensable
member of the dojo and tested for shodan (first-degree black-belt) in May 2021.
Mr. Hudson received a Bachelor of Science degree in computer science from
Fort Hayes State University and works as a web developer with expertise in web
design, development, and languages such as PHP, JavaScript, HTML, and CSS.

Foote, S. (2015). Learning to program. Addison-Wesley.
Freeman, E., Freeman, E., & Sierra, K. (2014). Head first design patterns: a brain-friendly guide. O’Reilly.
Jachja, T., & Tiffany Jachja Tiffany Jachja is an Evangelist at Harness. Prior to joining Harness. (2021, May 4). Understanding the

Phases of the Software Development Life Cycle (SDLC). Harness. https://harness.io/blog/devops/software-development-life-cycle/.
Martin, R. C. (2010). Clean code a handbook of agile software craftmanship. Upper Saddle River etc.: Prentice Hall.
Sanaulla, M. (2012, March 27). Redundancy: An Open Enemy to Writing Good Code - DZone Java. dzone.com.

https://dzone.com/articles/redundancy-open-enemy-writing.
Tzu, S., & Giles, L. (2017). The art of war. Place of publication not identified: Greyhound Press.
Weisgard, ethan monnot. (n.d.). http://www.aiki-shuren-dojo.com/pdf/Go%20no%20sen.pdf. http://www.aiki-shuren-dojo.com/.

http://www.aiki-shuren-dojo.com/pdf/Go%20no%20sen.pdf.
Wolfe, R. (2019, September). What’s the Point? Sword and Spirit, 3-4.
What is Memory Leak? How can we avoid? GeeksforGeeks. (2017, July 14). https://www.geeksforgeeks.org/what-is-memory-leak-how-can-

we-avoid/.

	Page 1
	Page 2
	Page 3
	Page 4

